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Abstract
We present a three-party quantum secret sharing protocol on arbitrary
dimensional quantum systems, and derive mutually unbiased bases on three-
qudit systems, which can guarantee the security of our protocol. In addition to
the security, we show that our protocol is more efficient than any previous
protocols since the number of discarding entangled states is minimized
by controlling the sender’s measurements according to other members’
measurements, and also show that other members have no information about
the sender’s private key until knowing the hidden value.

PACS numbers: 03.67.Hk, 03.67.Dd

1. Introduction

In classical secret sharing [1, 2], one party, say Alice, wants to send her message to the other
parties (Bob and Charlie) at a distance. However, Alice suspects that one of the others may
be dishonest, and she does not know who is the dishonest one. She tries to divide the secret
message into two pieces and give the proper relation between them so that Bob and Charlie
can decode the message only if they cooperate in the same place.

Hillery et al [3] first proposed a quantum secret sharing scheme with a tripartite entangled
state called the Greenberger–Horne–Zeilinger (GHZ) state [4], which was generalized into
quantum secret sharing (QSS) protocols on any higher dimensional systems using a N-party
N-level singlet state of total spin zero [5]. However, the protocols still have the restriction that
the number of participants should be the same as the dimension of each particle.

In this paper we construct a QSS protocol which does not have such a limit, and which
contains a hidden value controlling the correlation among outcomes of three parties. Moreover,
we show that our protocol based on GHZ-like states can be more efficient than any previous
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QSS protocols by allowing Alice to manage and to rotate the states locally according to the
measurement directions of Bob and Charlie.

Most of quantum cryptographic protocols assure that a malicious eavesdropper cannot
get the exact information about a private key and can be detected with a specific probability
when she measures a given state in the wrong direction. Thus, in order for QSS protocols
to be secure, Eve’s wrong measurement should give rise to uncertainty as much as possible.
On this account, two mutually unbiased basis (MUB) measurements [6–8] on d-dimensional
quantum systems play an important role in our protocol.

In section 2 we consider the generalized Pauli operators acting on d-dimensional systems,
and derive MUBs and the GHZ-like states. We provide our QSS protocol based on the GHZ-
like states in section 3, and analyze the security of the protocol for two cases of attacks in
section 4, where one is an eavesdropping by Eve, and the other is the intercept-and-resend
attack by a dishonest person. We finally summarize our results in section 5.

2. GHZ-like states on d-dimensional quantum systems

In this section, we derive two MUBs and GHZ-like states on d-dimensional quantum systems,
and investigate their properties related with the security of our protocol. First, we consider the
generalized Pauli operators [9–11] acting on d-dimensional Hilbert space:

X̃ =
d−1∑
j=0

|j + 1〉〈j |, Z̃ =
d−1∑
j=0

ωj |j 〉〈j |, (1)

Ỹ = X̃Z̃ =
d−1∑
j=0

ωj |j + 1〉〈j |, (2)

where ω = e2πi/d is a primitive dth root of unity. Let

|kx〉 = 1√
d

d−1∑
j=0

ω−kj |j 〉. (3)

Then |kx〉 is an eigenstate of X̃ with eigenvalue ωk . Let

|ky〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
d

d−1∑
j=0

ω
j2−2kj−j

2 |j 〉 if d is odd,

1√
d

d−1∑
j=0

ω
j2−2kj−2j

2 |j 〉 if d is even.

(4)

Then |ky〉 is an eigenstate of Ỹ with eigenvalue ωk if d is odd and with eigenvalue ωk
√

w if d
is even.

For each d, the set of eigenstates {|kx〉 : k ∈ Zd} of X̃ forms an orthonormal basis for
a d-dimensional quantum system, and so does {|ky〉 : k ∈ Zd} of Ỹ . Furthermore, they are
mutually unbiased to each other, that is, for any k, k′ ∈ Zd

|〈kx |k′
y〉| = 1√

d.

In our protocol, two MUB measurements, X = {|kx〉〈kx | : k ∈ Zd} and Y = {|ky〉〈ky | : k ∈
Zd}, are alternatively used.
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Let us construct a three-party entangled state

|�(α)〉XYY = 1

d

∑
s+t+u=α (mod d)

|sx〉|ty〉|uy〉, (5)

where α ∈ Zd . Then we can readily obtain

|�(α)〉XYY =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
d

d−1∑
j=0

ωj(j−1−α)|jjj〉 if d is odd,

1√
d

d−1∑
j=0

ωj(j−2−α)|jjj〉 if d is even.

(6)

Similarly we can derive an entangled state |�(α)〉XXX as follows:

|�(α)〉XXX = 1

d

∑
s+t+u=α (mod d)

|sx〉|tx〉|ux〉

= 1√
d

d−1∑
j=0

ω−jα|jjj 〉. (7)

It is easy to check that |�(1)〉XYY and |�(0)〉XXX are the same for d = 2, and furthermore
both |�(α)〉XYY and |�(α)〉XXX are essentially equivalent to the standard d-dimensional GHZ
state up to local unitary operations. In particular, it follows from equations (6) and (7) that

|�(α)〉XYY = (U ⊗ I ⊗ I )|�(α)〉XXX

= 1

d

∑
s+t+u=α (mod d)

U |sx〉|tx〉|ux〉, (8)

where

U =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d−1∑
j=0

ωj(j−1)|j 〉〈j | if d is odd,

d−1∑
j=0

ωj(j−2)|j 〉〈j | if d is even.

(9)

From this point of view, we call these states the GHZ-like states.
We now show that |�(α)〉XYY is the uniquely determined common eigenstate of XYY, YXY

and YYX with respect to eigenvalue ωα if d is odd (ωα+1 if d is even). Let d be odd and assume
that an arbitrary 3-qudit pure state |φ〉 = ∑

j,k,l ajkl|jkl〉 satisfies

XYY |φ〉 = YXY|φ〉 = YYX|φ〉 = ωα|φ〉. (10)

It follows from straightforward calculations that

|φ〉 = 1√
d

d−1∑
j=0

ωj(j−1−α)|jjj 〉 = |�(α)〉XYY . (11)

Similarly, if d is even, we also have

|φ〉 = 1√
d

d−1∑
j=0

ωj(j−2−α)|jjj 〉 = |�(α)〉XYY . (12)

Moreover, we can see that |�(α)〉XYY = |�(α)〉YXY = |�(α)〉YYX. Hence, if Alice, Bob
and Charlie measure |�(α)〉XYY by XYY, YXY or YYX, then they obtain outcomes s, t and u
satisfying that s + t + u = α (mod d), respectively.
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Table 1. Alice’s measurements corresponding to Bob’s and Charlie’s: U is the local unitary
operation which transforms |�(α)〉XXX into |�(α)〉XYY in equation (9).

State Bob Charlie Alice

|�(α)〉XYY Y Y X
|�(α)〉XYY Y X Y
|�(α)〉XYY X Y Y
|�(α)〉XYY X X UXU †

3. Our protocol

In QSS, Bob and Charlie obtain Alice’s private key from the correlation of outcomes, given by
measuring a three-party entangled quantum systems. In fact, Bob and Charlie can get Alice’s
information by a joint measurement such as Bell measurement if they are together at same
place. This is the same situation as the quantum key distribution (QKD) like BB84 or EPR
protocols [12, 13].

However, QSS protocol proceeds in the condition that they are far away from each other
and measure their states locally. Non-locality and entanglement distributed between them are,
after all, used to give a correlation between their classical outcomes by local measurements.
Therefore, one of the most important problem in QSS is how Alice sends an entangled state
to Bob and Charlie securely against eavesdropping by any exterior Eve and the intercept-and-
resend attack by an interior dishonest person. In order to construct the QSS protocol satisfying
the above conditions, we use two MUB measurements given in section 2.

(i) Alice prepares a GHZ-like state, |�(α)〉XYY , and sends Bob and Charlie the last two
particles, respectively. Alice repeats this step 2n times, and all participants store their
particles in the order received.

(ii) Bob and Charlie publicly announce the fact that they have already received all 2n particles
from Alice, and then they measure their own qudits after deciding one of measurement
directions X and Y randomly.

(iii) Alice informs Bob and Charlie a randomly chosen 2n bit string b, each entry of which
is either 0 or 1. Then for ith particles corresponding to bi = 1 Alice requires Bob and
Charlie to announce their measurement outcomes and directions in the order randomly
determined as either [(1) Bob’s outcome, (2) Charlie’s outcome, (3) Charlie’s direction,
(4) Bob’s direction] or [(1) Charlie’s outcome, (2) Bob’s outcome, (3) Bob’s direction,
(4) Charlie’s direction].

(iv) Alice properly measures her ith particles corresponding to bi = 1 in the direction
correlated with measurement of Bob and Charlie as in table 1.

(v) If Alice finds any error from all participants’ measurement outcomes in step iv, then she
aborts the protocol. Otherwise, they discard the particles for the test, and Alice lets Bob
and Charlie announce their measurement directions for the particles left after the test.

(vi) Alice properly measures her particles in the direction perfectly correlated with
measurement of Bob and Charlie as in table 1; this step tells us that since there is no
loss of states except for particles discarding for the test, our protocol can be twice as
efficient as the original QSS, on the average.

(vii) When Bob and Charlie collaborate to obtain Alice’s information, Alice announces the
hidden value α to Bob and Charlie. Then they can derive her private key string from the
outcome correlation, s + t + u = α (mod d).
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Here, Alice’s private key s is determined by t + u and the hidden value α. Thus, Bob and
Charlie have no information about Alice’s private key until knowing α.

We remark that it is possible to use a string consisting of different hidden values for GHZ-
like states, instead of the fixed α, and also remark that only in the distribution and verification
of desired quantum states, one needs to use different basis measurements, in other words, once
they have verified that they have the desired states, the three participants only need to measure
XYY for secret sharing [14].

4. Security

4.1. Eavesdropping by exterior Eve

In section 2, we have shown that |�(α)〉XYY is the unique pure three-party quantum state
invariant under operators XYY, YXY and YYX simultaneously, with respect to an eigenvalue
ωα if d is odd (ωα+1 if d is even).

This means that if

|�〉 =
d−1∑

j,k,l=0

ajkl|jkl〉ABC |Rjkl〉E (13)

successfully passes the test of our protocol then |�〉 should be a product state

|�〉 = |�(α)〉XYY ⊗ |R〉E. (14)

In other words, after the test of our protocol, Eve is perfectly separated and the perfect
correlation, s + t + u = α (mod d), is securely preserved among all participants. Therefore,
our protocol is secure against any exterior Eve’s eavesdropping.

4.2. Intercept-and-resend attack by interior dishonest party

In this section, we consider the case that one of receivers Bob and Charlie changes his mind
and tries to obtain Alice’s private key alone. Suppose a dishonest person (Bob) performs the
intercept-and-resend attack on Charlie’s particles.

First, Bob can intercept, measure by predicting the measurement direction of Charlie, and
resend the collapsed state to him. If Bob and Charlie measure Charlie’s original states in the
same directions, then Bob can obtain the information about Alice’s private key alone after
knowing the hidden value α. Although Bob performs measurements in the directions different
from Charlie, his attacks can be unexposed with probability 1/d. Therefore, the exposed
probability is not less than 1 − (

d+1
2d

)n
during the test procedure and we can find out that the

higher dimensional system provides us with the better security for QSS protocol. This is due
to the fact that the number of eigenspaces of measurement linearly increases as the dimension
of system gets higher, and that it is also difficult for Bob to obtain the same result as Charlie’s
when n is sufficiently large.

We now assume that Bob possesses all states Alice sent and gives Charlie one sides of d-
dimensional bipartite (maximally entangled) states. In step iii of our protocol, the measurement
directions and outcomes of Bob and Charlie are alternately announced in a specific way. As in
[15], this procedure prevents dishonest Bob from cheating the other members. Therefore, our
protocol is also secure against intercept-and-resend attacks by an interior dishonest member.

We remark here that although this security analysis is not about unconditional security,
its unconditional security could be proved by modifying the proof of unconditional security
of the QKD and applying it to our protocol.
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5. Conclusions

We have presented a 3-party d-level QSS protocol. To construct a QSS protocol on arbitrary
d-dimensional quantum systems, we have derived MUBs on Hilbert space C

d ⊗ C
d ⊗ C

d ,
which guarantees the security of our protocol. Especially, with the explicit formula for the
exposed probability, we have shown that the higher dimensional system assures the better
security for QSS protocol.

In addition to the security, our protocol is more efficient than any other protocols since
the number of discarding entangled states is minimized in our protocol by controlling Alice’s
measurements according to measurements of Bob and Charlie. Furthermore, in contrast to the
previously known QSS protocols, Bob and Charlie have no information about Alice’s private
key until knowing the hidden value or string α, although a dishonest member is not detected
in the middle of test.

Our protocol requires perfect GHZ-like states. Applying several techniques in [14] to
our protocol, quantum sharing of classical secrets could be also possible in a noisy quantum
channel.

Acknowledgments

DPC was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded
by the Korea government (MOST) (no R01-2006-000-10698-0), JSK was supported by
Alberta’s informatics Circle of Research Excellence (iCORE) and SL was supported by
the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic
Research Promotion Fund) (KRF-2007-331-C00049).

References

[1] Shamir A 1979 Commun. ACM 22 612
[2] Blakley G R 1979 Proc. of the National Computer Conf. vol 48 p 313
[3] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[4] Greenberger D M, Horne M A and Zeilinger A 1989 Bell’s Theorem, Quantum Theory, and Conceptions of the

Universe ed M Kafatos (Dordrecht: Kluwer) p 69
[5] Cabello A 2002 Phys. Rev. Lett. 89 100402
[6] Wootters W K and Fields B D 1989 Ann. Phys. 191 363
[7] Barnum H 2002 Preprint quant-ph/0205155
[8] Klappenecker A and Roetteler M 2004 Proc. 7th Int. Conf. on Finite Fields and Applications (Toulouse, 2003)

(Lecture Notes in Computer Science vol 2948) (Berlin: Springer) pp 137–44 (Preprint quant-ph/0309120)
[9] Patera J and Zassenhaus H 1988 J. Math. Phys. 29 665

[10] Gottesman D, Kitaev A and Preskill J 2001 Phys. Rev. A 64 012310
[11] Bartlett S D, de Guise H and Sanders B C 2002 Phys. Rev. A 65 052316
[12] Bennett C H and Brassard G 1984 Conf. on Computers, Systems and Signal Processing (Bangalore, India) (New

York: IEEE) p 175
[13] Ekert A K 1991 Phys. Rev. Lett. 67 661
[14] Chen K and Lo H K 2007 Quantum Inf. Comput. 7 689
[15] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162

6

http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1103/PhysRevA.59.1829
http://dx.doi.org/10.1103/PhysRevLett.89.100402
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://www.arxiv.org/abs/quant-ph/0205155
http://www.arxiv.org/abs/quant-ph/0309120
http://dx.doi.org/10.1063/1.528006
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.65.052316
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevA.59.162

	1. Introduction
	2. GHZ-like states
	3. Our protocol
	4. Security
	4.1. Eavesdropping by exterior Eve
	4.2. Intercept-and-resend attack by interior dishonest party

	5. Conclusions
	Acknowledgments
	References

